1 (i)	$\left(\begin{array}{c}-1 \\ 4 \\ 3\end{array}\right) \times\left(\begin{array}{c}-k \\ 4 \\ k+2\end{array}\right)=\left(\begin{array}{c}4 k-4 \\ 2-2 k \\ 4 k-4\end{array}\right)\left[=2(k-1)\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)\right]$	$\left.\begin{array}{\|ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A2 } & 4 \end{array} \right\rvert\,$	$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$ (Condone $\overrightarrow{\mathrm{BA}}$ and $\overrightarrow{\mathrm{DC}}$) Evaluating vector product Give A1 ft for one element correct
(ii)(A)	$k=1$	B1 1 	
(B)	$\overrightarrow{\mathrm{CA}} \times \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c} -3 \\ -8 \\ 4 \end{array}\right) \times\left(\begin{array}{c} -1 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{c} -40 \\ 5 \\ -20 \end{array}\right)$ Distance is $\frac{\|\overrightarrow{\mathrm{CA}} \times \overrightarrow{\mathrm{AB}}\|}{\|\overrightarrow{\mathrm{AB}}\|}=\frac{45}{\sqrt{26}} \quad(\approx 8.825)$	M1 M1 A1 M1 M1 A1 6	For appropriate vector product Evaluation Dependent on previous M1 Method for finding shortest distance Dependent on first M1 Calculating magnitudes Dependent on previous M1 Accept 8.82 to 8.83
	$\begin{aligned} & \mathrm{OR} \overrightarrow{\mathrm{CP}} \cdot \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c} -2-\lambda-1 \\ -3+4 \lambda-5 \\ 2+3 \lambda+2 \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ 4 \\ 3 \end{array}\right)=0 \quad \text { M2A1 } \\ & \overrightarrow{\mathrm{CP}}=\frac{1}{26}\left(\begin{array}{c} -95 \\ -140 \\ 155 \end{array}\right) \text { Distance is } \frac{\sqrt{52650}}{26} \\ & \text { M1 } \\ & \text { M1A1 } \end{aligned}$		Finding $\overrightarrow{\mathrm{CP}}$ Dependent on previous M1 Dependent on previous M1
(C)	Normal vector is $\overrightarrow{C A} \times \overrightarrow{A B}=\left(\begin{array}{c}-40 \\ 5 \\ -20\end{array}\right)=-5\left(\begin{array}{c}8 \\ -1 \\ 4\end{array}\right)$ Equation of plane is $8 x-y+4 z=-16+3+8$ $8 x-y+4 z+5=0$	M1 M1 A1 3	Dependent on previous M1 Allow $-40 x+5 y-20 z=25$ etc
(iii)	$\frac{\overrightarrow{\mathrm{AC}} \cdot(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}})}{\|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}}\|}=\frac{\left(\begin{array}{c} k+2 \\ 8 \\ -4 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ -1 \\ 2 \end{array}\right)(2 k-2)}{3(2 k-2)}$ Shortest distance is $\left\|\frac{2 k-12}{3}\right\|$		For $\overrightarrow{A C} \cdot(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}})$ Fully correct method (evaluation not required) Dependent on previous M1 Correct evaluated expression for distance ft from (i) Simplified answer Modulus not required

(iv)	Intersect when $k=6$ $\begin{aligned} -2-\lambda & =6-6 \mu \\ -3+4 \lambda & =5+4 \mu \\ 2+3 \lambda & =-2+8 \mu \end{aligned}$ Solving, $\lambda=4, \mu=2$ Point of intersection is $(-6,13,14)$	B1 ft M1 A1 ft M1 A1 A1 6	Forming at least two equations Two correct equations Solving to obtain λ or μ Dependent on previous M1 One value correct
	$-2-\lambda=k-k \mu$ M1 OR $-3+4 \lambda=5+4 \mu$ A1 $2+3 \lambda=-2+(k+2) \mu$ M1A1 Solving, $k=6$ A1 $\lambda=4, \mu=2$ A1		Forming three equations All equations correct Dependent on previous M1 One value correct

2 (i)	Normal vector is $\left(\begin{array}{c}2 x-4 y \\ -4 x+6 y \\ -4 z\end{array}\right)$	M1 A1 A1 A1	Partial differentiation Condone $\mathbf{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\lambda\left(\begin{array}{c}2 x-4 y \\ -4 x+6 y \\ -4 z\end{array}\right)$ For 4 marks the normal must appear as a vector (isw)
(ii)	At Q normal vector is $\left(\begin{array}{c}18 \\ -44 \\ -4\end{array}\right)$ Tangent plane is $\begin{aligned} 18 x-44 y-4 z & =306-176-4=126 \\ 9 x-22 y-2 z & =63 \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	For $18 x-44 y-4 z$ Dependent on previous M1 Using Q to find constant Accept any correct form
(iii)	$\begin{aligned} 18 \delta x-44 \delta y-4 \delta z & \approx 0 \\ 18 h-44 p-4(-h) & \approx 0 \\ p & \approx \frac{1}{2} h \end{aligned}$	M1 A1 ft M1 A1	For $18 \delta x-44 \delta y-4 \delta z$ If left in terms of x, y, z : M1A0M1A0
	$\left\lvert\, \begin{array}{cr} \text { OR } 9(17+h)-22(4+p)-2(1-h) \approx 63 & \text { M2A1 ft } \\ p \approx \frac{1}{2} h & \text { A1 } \end{array}\right.$		
	$\text { OR } \begin{align*} & (17+h)^{2}-4(17+h)(4+p)+\ldots=0 \\ & -44 p+22 h \approx 0 \\ & p \approx \frac{1}{2} h \tag{A1} \end{align*}$ M2A1		Neglecting second order terms
	$\begin{array}{rlr\|} \text { OR } p & =\frac{4 h+44 \pm \sqrt{28 h^{2}+88 h+1936}}{6} & \text { M2A1 } \\ p & \approx \frac{1}{2} h & \text { A1 } \end{array}$		
(iv)	Normal parallel to z-axis requires $\begin{aligned} & 2 x-4 y=0 \text { and }-4 x+6 y=0 \\ & x=y=0 ; \text { then }-2 z^{2}-63=0 \end{aligned}$ No solutions; hence no such points	M1A1 ft M1 A1 (ag) 4	Correctly shown
	OR $2 x-4 y=-4 x+6 y$, so $y=\frac{3}{5} x$ $-\frac{8}{25} x^{2}-2 z^{2}-63=0$, hence no points M2A2		Similarly if only $2 x-4 y=0$ used
(v)	$\begin{aligned} & 2 x-4 y=5 \lambda \\ &-4 x+6 y=-6 \lambda \\ &-4 z=2 \lambda \\ & x=-\frac{3}{2} \lambda, \quad y=-2 \lambda, \quad z=-\frac{1}{2} \lambda \end{aligned}$ Substituting into equation of surface $\begin{aligned} \frac{9}{4} \lambda^{2}-12 \lambda^{2}+12 \lambda^{2}-\frac{1}{2} \lambda^{2}-63 & =0 \\ \lambda & = \pm 6 \end{aligned}$	M1A1 ft M1 M1 M1 M1	Obtaining x, y, z in terms of λ or $x=3 z, y=4 z$ Obtaining a value of λ (or equivalent)

	Point $(-9,-12,-3)$ gives $k=-45+72-6=21$ Point $(9,12,3)$ gives $k=45-72+6=-21$	A1 A1	Using a point to find k If $\lambda=1$ is assumed: MOM1MOMOM1

3 (i)	$\begin{aligned} \left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2} & =\left(6 t^{2}-6\right)^{2}+(12 t)^{2} \\ & =36 t^{4}+72 t^{2}+36 \\ & =36\left(t^{2}+1\right)^{2} \end{aligned}$ Arc length is $\int_{0}^{1} 6\left(t^{2}+1\right) \mathrm{d} t$ $\begin{aligned} & =\left[2 t^{3}+6 t\right]_{0}^{1} \\ & =8 \end{aligned}$	M1A1 A1 M1 A1 A1	Using $\int \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t$ For $2 t^{3}+6 t$
(ii)	Curved surface area is $\begin{aligned} \int 2 \pi y \mathrm{~d} s & =\int_{0}^{1} 2 \pi\left(6 t^{2}\right) 6\left(t^{2}+1\right) \mathrm{d} t \\ & =\pi\left[\frac{72}{5} t^{5}+24 t^{3}\right]_{0}^{1} \\ & =\frac{192 \pi}{5} \quad(\approx 120.6) \end{aligned}$	M1 A1 M1 A1 A1 5	Using $\int \ldots y$ ds (in terms of t) with 'ds' the same as in (i) Any correct integral form in terms of t (limits required) Integration For $\pi\left(\frac{72}{5} t^{5}+24 t^{3}\right)$
(iii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 t}{6 t^{2}-6}\left(=\frac{2 t}{t^{2}-1}\right)$ Equation of normal is $\begin{aligned} y-6 t^{2} & =\frac{1-t^{2}}{2 t}\left(x-2 t^{3}+6 t\right) \\ y-6 t^{2} & =\frac{1}{2}\left(\frac{1}{t}-t\right) x-t^{2}\left(1-t^{2}\right)+3\left(1-t^{2}\right) \\ y & =\frac{1}{2}\left(\frac{1}{t}-t\right) x+2 t^{2}+t^{4}+3 \end{aligned}$	M1 A1 M1 A1 (ag)	Method of differentiation At least one intermediate step required Correctly obtained
(iv)	Differentiating partially with respect to t $\begin{aligned} & 0=\frac{1}{2}\left(-\frac{1}{t^{2}}-1\right) x+4 t+4 t^{3} \\ & \frac{1}{2 t^{2}}\left(1+t^{2}\right) x=4 t\left(1+t^{2}\right) \\ & x=8 t^{3} \\ & t=\frac{1}{2} x^{\frac{1}{3}}, \text { so } \quad y=\frac{1}{2}\left(2 x^{-\frac{1}{3}}-\frac{1}{2} x^{\frac{1}{3}}\right) x+\frac{1}{2} x^{\frac{2}{3}}+\frac{1}{16} x^{\frac{4}{3}}+3 \\ & y=\frac{3}{2} x^{\frac{2}{3}}-\frac{3}{16} x^{\frac{4}{3}}+3 \end{aligned}$	M1 A2 M1 M1 A1 6	Give A1 if just one error or omission For obtaining $a x=b t^{3}$ Eliminating t

\begin{tabular}{|c|c|c|c|}
\hline (v) \& P lies on the envelope of the normals
$$
\text { Hence } \begin{aligned}
a & =\frac{3}{2} \times 64^{\frac{2}{3}}-\frac{3}{16} \times 64^{\frac{4}{3}}+3 \\
& =-21
\end{aligned}
$$ \& M1

M1

A1 \& | Or a fully correct method for finding the centre of curvature at a general pt $\left[\left(8 t^{3}, 6 t^{2}-3 t^{4}+3\right)\right]$ |
| :--- |
| Or $t=2$ and $a=6 \times 2^{2}-3 \times 2^{4}+3$ | \\

\hline
\end{tabular}

4 (i)		B6	Give B5 for 30 (bold) entries correct Give B4 for 24 (bold) entries correct Give B3 for 18 (bold) entries correct Give B2 for 12 (bold) entries correct Give B1 for 6 (bold) entries correct
(ii)	Eleme nt \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} $\mathbf{- I}$ $\mathbf{- J}$ $\mathbf{- K}$ $\mathbf{- L}$ Invers \mathbf{I} $\mathbf{- J}$ $\mathbf{- K}$ $\mathbf{- L}$ $\mathbf{- I}$ \mathbf{J} \mathbf{K} \mathbf{L} e	B3	Give B2 for six correct Give B1 for three correct
(iii)	Eleme nt \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} $\mathbf{- I}$ $\mathbf{- J}$ $\mathbf{- K}$ $\mathbf{- L}$ Order 1 4 4 4 2 4 4 4	B3	Give B2 for six correct Give B1 for three correct
(iv)	Only two elements of G do not have order 4; so any subgroup of order 4 must contain an element of order 4 A subgroup of order 4 is cyclic if it contains an element of order 4 Hence any subgroup of order 4 is cyclic	M1A1 B1 A1 4	(may be implied) For completion
	OR If a group of order 4 is not cyclic, it contains three elements of order 2 B1 G has only one element of order 2; so this cannot occur M1A1 So any subgroup of order 4 is cyclic A1		
(v)	$\begin{aligned} & \{\mathbf{I},-\mathbf{I}\} \\ & \{\mathbf{I}, \mathbf{J},-\mathbf{I},-\mathbf{J}\} \\ & \{\mathbf{I}, \mathbf{K},-\mathbf{I},-\mathbf{K}\} \\ & \{\mathbf{I}, \mathbf{L},-\mathbf{I},-\mathbf{L}\} \end{aligned}$	B1 B1 B1 B1 B1 5	For $\{\mathbf{I},-\mathbf{I}\}$, at least one correct subgroup of order 4, and no wrong subgroups. This mark is lost if G or $\{\mathbf{I}\}$ is included

(vi)	The symmetry group has 5 elements of order 2	M1	Considering elements of order 2 (or self-inverse elements) (4 reflections and rotation through $\left.180^{\circ}\right)$			
	A1	Identification of at least two elements of order 2 in the symmetry group				
is not isomorphic to the symmetry group				\quad	A1	For completion
:---	:---					

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{ccc}0.8 & 0.1 & 0 \\ 0.2 & 0.6 & 0.15 \\ 0 & 0.3 & 0.85\end{array}\right)$	B1B1B1	For the three columns
(ii)	$\mathbf{P}^{7}\left(\begin{array}{c} 0.6 \\ 0.4 \\ 0 \end{array}\right)=\left(\begin{array}{lll} 0.3204 & 0.1545 & 0.0927 \\ 0.3089 & 0.2895 & 0.2780 \\ 0.3706 & 0.5560 & 0.6293 \end{array}\right)\left(\begin{array}{c} 0.6 \\ 0.4 \\ 0 \end{array}\right)=\left(\begin{array}{l} 0.254 \\ 0.301 \\ 0.445 \end{array}\right)$ Division 3 is the most likely	M1 M1 A1 M1 A1 A1 6	Considering \mathbf{P}^{7} (or \mathbf{P}^{8} or \mathbf{P}^{6}) Evaluating a power of \mathbf{P} For \mathbf{P}^{7} (Allow ± 0.001 throughout) Evaluation of probabilities One probability correct Correctly determined
(iii)	$\mathbf{P}^{n} \rightarrow\left(\begin{array}{lll} 0.1429 & 0.1429 & 0.1429 \\ 0.2857 & 0.2857 & 0.2857 \\ 0.5714 & 0.5714 & 0.5714 \end{array}\right)$ Equilibrium probabilities are $0.143,0.286$, 0.571	M1 M1 A1 3	Considering powers of \mathbf{P} Obtaining limit Must be accurate to 3 dp if given as decimals
	OR $\begin{aligned} & \mathbf{P}\left(\begin{array}{l} p \\ q \\ r \end{array}\right)=\left(\begin{array}{l} p \\ q \\ r \end{array}\right) \Rightarrow \begin{array}{l} 0.8 p+0.1 q=p \\ 0.2 p+0.6 q+0.15 r=q \\ 0.3 q+0.85 r=r \end{array} \\ & q=2 p, \quad \mathrm{M} 1 \\ & p=\frac{1}{7}, \quad q=\frac{2}{7}, \quad r=\frac{4}{7} \end{aligned}$		Obtaining at least two equations Solving (must use $p+q+r=1$)
(iv)	$\mathbf{Q}=\left(\begin{array}{cccc}0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.6 & 0.15 & 0 \\ 0 & 0.3 & 0.75 & 0 \\ 0 & 0 & 0.1 & 1\end{array}\right)$	B1 B1 B1 3	Third column Fourth column Fully correct
(v)	$\begin{aligned} & \mathbf{Q}^{5}\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right)=\left(\begin{array}{llll} 0.4122 & 0.1566 & 0.0592 & 0 \\ 0.3131 & 0.2767 & 0.2052 & 0 \\ 0.2369 & 0.4105 & 0.4030 & 0 \\ 0.0378 & 0.1563 & 0.3326 & 1 \end{array}\right)\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right) \\ &=\left(\begin{array}{l} 0.1566 \\ 0.2767 \\ 0.4105 \\ 0.1563 \end{array}\right) \\ & \mathrm{P}(\text { still in league })=1-0.1563 \\ &=0.844 \end{aligned}$	M1 M1 A1 M1 A1 ft	Considering \mathbf{Q}^{5} (or \mathbf{Q}^{6} or \mathbf{Q}^{4}) Evaluating a power of \mathbf{Q} For 0.1563 (Allow 0.156 ± 0.001) For $1-a_{4,2}$ ft dependent on M1M1M1
(vi)	P (out of league) is element $a_{4,2}$ in \mathbf{Q}^{n} When $n=15, a_{4,2}=0.4849$ When $n=16, a_{4,2}=0.5094$ First year is 2031	M1 M1 A1 A1 4	Considering \mathbf{Q}^{n} for at least two more values of n Considering $a_{4,2}$ Dep on previous M1 For $n=16$ $S R$ With no working, $n=16$ stated B3 2031 stated B4

Post-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0 & 0.15 & 0.85\end{array}\right)$	B1B1B1 3	For the three rows
(ii)	$\begin{aligned} & \left(\begin{array}{lll} 0.6 & 0.4 & 0 \end{array}\right) \mathbf{P}^{7} \\ & \quad=\left(\begin{array}{lll} 0.6 & 0.4 & 0 \end{array}\right)\left(\begin{array}{lll} 0.3204 & 0.3089 & 0.3706 \\ 0.1545 & 0.2895 & 0.5560 \\ 0.0927 & 0.2780 & 0.6293 \end{array}\right) \\ & \quad=\left(\begin{array}{lll} 0.254 & 0.301 & 0.445 \end{array}\right) \end{aligned}$ Division 3 is the most likely	M1 M1 A1 M1 A1 A1	Considering \mathbf{P}^{7} (or \mathbf{P}^{8} or \mathbf{P}^{6}) Evaluating a power of \mathbf{P} For \mathbf{P}^{7} (Allow ± 0.001 throughout) Evaluation of probabilities One probability correct Correctly determined
(iii)	$\mathbf{P}^{n} \rightarrow\left(\begin{array}{lll} 0.1429 & 0.2857 & 0.5714 \\ 0.1429 & 0.2857 & 0.5714 \\ 0.1429 & 0.2857 & 0.5714 \end{array}\right)$ Equilibrium probabilities are $0.143,0.286$, 0.571	M1 M1 A1 3	Considering powers of \mathbf{P} Obtaining limit Must be accurate to $3 d p$ if given as decimals
	$\begin{array}{cc} \text { OR }\left(\begin{array}{ccc} p & q & r \end{array}\right) \mathbf{P}=\left(\begin{array}{lll} p & q & r \end{array}\right) & \\ 0.8 p+0.1 q=p & \text { M1 } \\ 0.2 p+0.6 q+0.15 r=q & \\ 0.3 q+0.85 r=r & \text { M1 } \\ q=2 p, r=2 q=4 p \text { and } p+q+r=1 & \text { M1 } \\ p=\frac{1}{7}, \quad q=\frac{2}{7}, \quad r=\frac{4}{7} & \text { An } \end{array}$		Obtaining at least two equations Solving (must use $p+q+r=1$)
(iv)	$\mathbf{Q}=\left(\begin{array}{cccc}0.8 & 0.2 & 0 & 0 \\ 0.1 & 0.6 & 0.3 & 0 \\ 0 & 0.15 & 0.75 & 0.1 \\ 0 & 0 & 0 & 1\end{array}\right)$	B1 B1 B1 3	Third row Fourth row Fully correct
(v)	$\left.\begin{array}{l} \left(\begin{array}{llll} 0 & 1 & 0 & 0 \end{array}\right) \mathbf{Q}^{5} \\ =\left(\begin{array}{llll} 0 & 1 & 0 & 0 \end{array}\right)\left(\begin{array}{cccc} 0.4122 & 0.3131 & 0.2369 & 0.0378 \\ 0.1566 & 0.2767 & 0.4105 & 0.1563 \\ 0.0592 & 0.2052 & 0.4030 & 0.3326 \\ 0 & 0 & 0 & 1 \end{array}\right) \\ =\left(\begin{array}{lll} 0.1566 & 0.2767 & 0.4105 \end{array} 0.1563\right. \end{array}\right) .$	M1 M1 A1 M1 A1 ft	Considering \mathbf{Q}^{5} (or \mathbf{Q}^{6} or \mathbf{Q}^{4}) Evaluating a power of \mathbf{Q} For 0.1563 (Allow 0.156 ± 0.001) For $1-a_{2,4}$ ft dependent on M1M1M1

(vi)	P (out of league) is element $a_{2,4}$ in \mathbf{Q}^{n} When $n=15, a_{2,4}=0.4849$ When $n=16, a_{2,4}=0.5094$ First year is 2031	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		Considering \mathbf{Q}^{n} for at least two more values of n Considering $a_{2,4}$ Dep on previous M1 For $n=16$ SR With no working, $\begin{array}{cc} n=16 \text { stated } & \text { B3 } \\ 2031 \text { stated } & \text { B4 } \end{array}$

